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Abstract

Retrieving and managing Content-Based Medical Images Retrieval (CBMIR) are

considered more important now, especially with increasing in medical imaging and

expanding the medical image database. Also, these systems allow for the benefit of

medical images in having a better grasp on and deeper insights into the causes and

treatment of different diseases, not only for diagnostic purposes. CBMIR, therefore,

played an important role in the field of image processing and the extraction of

low-level features such as color histograms, edges, texture, and shape, as well as

similarity measures for comparison and retrieval of medical images. The majority

of the methods already used in CBMIR enhance the retrieval of a medical image

and disease diagnosis by reducing the issue of the semantic gap between low visual

and high semantic levels. To overcome these problems, there is a critical need for

an efficient and accurate content-based medical image retrieval method. This thesis

proposes an efficient method of Retrieval based on Query Expansion (RbQE) for

the retrieval of Computed Tomography (CT), Magnetic Resonance Imaging (MRI),

and histopathological images. RbQE is based on expanding the features of querying

and exploiting the pre-trained learning models AlexNet, VGGNets, and ResNets

to extract compact, deep, and high-level features from medical images. There are

two searching procedures in RbQE: a rapid search and a final search. In the rapid

search, the original query is expanded by retrieving the top-ranked images from each

class and is used to reformulate the query by calculating the mean values for deep
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features of the top-ranked images, resulting in a new query for each class. In the

final search, the new query that is most similar to the original query will be used

for retrieval from the database. The performance of the proposed method has been

compared to state-of-the-art methods on five publicly available standard datasets,

namely, TCIA-CT, EXACT09-CT, NEMA-CT, OASIS-MRI, and KIMIA Path960.

Experimental results show that the proposed method exceeds the compared methods

by 0.84%, 4.86%, 1.24%, 14.34%, and 1.96% in average retrieval precision (ARP) on

the retrieval of the top ten, for TCIA-CT, EXACT09-CT, NEMA-CT, OASIS-MRI,

and KIMIA Path960, respectively. But for KIMIA Path960, the ARPs for the top

five, fifteen, and twenty exceed the compared methods by 2.14%, 6.74%, and 9.42%,

respectively.
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Chapter 1

Introduction

In this chapter, we introduce the background of Information Retrieval (IR) and

Content-Based Medical Image Retrieval (CBMIR), the thesis objectives and main

contributions, and the thesis organization.

1.1 Background and Problem Statement

The term Information Retrieval (IR) is the science of searching for information in a

document, searching for documents themselves, and also searching for the metadata.

This term was coined in 1952, and since 1961 it has gained popularity in the research

community. Also, one may describe such a system as storing and retrieving informa-

tion. In the past, information retrieval has meant textual information retrieval, but

the above definition still holds when applied to visual information retrieval (VIR).

However, there is a distinction between the type of information and the nature of

the retrieval of text and visual objects [68]. Textual information is linear, while

images are bi-dimensional. Generally, there are two approaches to solving the VIR

problem. They are based on the form of visual information: attribute-based and

feature-based methods. Attribute-based methods rely on traditional textual infor-

mation retrieval and Relational Database Management System (RDBMS) methods.

1
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While feature-based solutions concentrate on visual features such as color, texture,

and shape of images that would be indexed according to these features [126]. Med-

ical Image Retrieval (MIR) is the way for searching and retrieving relevant medical

images from large medical databases. There is a three types of retrieval for medical

images as follow:

• Text / Tag Based Medical Image Retrieval (TBMIR) is based on the textual

description or annotation of images.

• Content-Based Medical Image Retrieval (CBMIR) is based on the image fea-

tures like color, texture, and shape or any other features being derived from

the image itself.

• Hybrid Approach both textual query, and visual features are combined (also

known as fusion) to obtain the desired output medical image [49].

CBMIR is an image search technology that aims to find images most comparable

to a certain query, where the search for images is based on their features, whether

high-level or low-level. The main difference between low and high-level features lies

in the fact that the first one is characteristics extracted from an image, such as

colors, edges, and textures. These features are frequently unique to a single im-

age or video and have little relevance on their own. In contrast, the second one is

extracted from low-level features, denotes more semantically meaningful concepts,

and contains more complicated details about an image’s or video’s topic. Items,

scenarios, and interactions are instances of high-level features. CBMIR’s success

depends mainly on the selected features where the images are represented as fea-

tures with a high dimension [70]. The similarity between the query and the stored

images in the datasets is measured using distance metrics such as Euclidean Dis-

tance (ED) and Cosine Similarity (CS). The encoding of images in terms of features
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and the selection of an algorithm for measuring similarity are thus the most signifi-

cant components of CBMIR systems. Despite the fact that several researchers have

extensively researched these topics [128].

The CBMIR main architecture is shown in Fig. 1.1, which is composed of two

fundamental steps: the feature extraction step (offline phase) and the similarity

measurement computation step (online phase) [93, 122, 104]. There are many simi-

larity measurements that can be used in (online phase), let X = (x1, x2,..., xn) and

Y = (y1, y2,..., yn), two feature vectors with n dimension, the similarity distance is

computed as follows:

• Euclidean Distance (ED) [26]

ED (X, Y ) =

√√√√ n∑
i=1

(xi − yi)
2 (Ch1-1)

• Manhattan Distance (MD) [25]

MD (X, Y ) =
n∑

i=1

|xi − yi| (Ch1-2)

• Cosine Distance [69]

Cosine (X, Y ) =
x · y
|x||y|

(Ch1-3)

• Minkowski Distance [41]

Minkowski (X, Y ) =

(
n∑

i=1

|xi − yi|p
) 1

p

(Ch1-4)
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• Jaccard Distance [59]

Jaccard (X, Y ) =
|X ∩ Y |
|X ∪ Y |

(Ch1-5)

Figure 1.1: The CBMIR Main Architecture.

The CBMIR may also provide an effective means of supplementing diagnostics

and treatment of various diseases, as well as an efficient tool for managing massive

amounts of data [133]. The implementation of an efficient framework for medical

image retrieval is therefore important to help clinicians access such large datasets.

Many algorithms for automated medical image analysis and retrieval have been pro-

posed in the literature to encourage the creation and management of these massive

datasets of medical images [79, 53, 97, 100, 101].

Different descriptors at a global level have been created over the last few decades

to represent images. For example in features of shape, color [50], and texture-based
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features [75]. Eakins [35] categorizes image features into three levels. first, the

spatial location of image elements and colors, as well as texture and shape, are

considered from level one features. Second, the features that are derived or logical

features are considered to be at level two, which implies a degree of inference with

regard to the identities of the objects in the image. Third, the features at the

final level are recognized as abstract attributes, and they involve complex inferences

about the significance of objects belonging to the image.

Shape and color are considered significant features in images, where various visual

indications are given by the shape, such as characteristics of curve, contour, and

surface, while powerful visual cues are provided by color and dominate color imaging.

The features of texture spatially organized the pixels in an image. These features

need standard tools to analyze them, like Gabor filters [35], Fourier transforms, and

wavelets. In addition, there are some local descriptors that have been developed like

Scale Invariant Feature Transform (SIFT) [73], Speed Up Robust Features (SURF)

[14], and model of Bag of Words (BoW) [137, 111, 135]. The semantic gap problem

was tried to address in various studies [132, 76, 7], but the features used in these

studies cannot fully able address this problem. The SIFT features are used in [132]

as a representation of images of the training and query, and the performance of

the system was tested by using two classifiers, where the classification and indexing

were done by algorithms of the nearest neighbor and KD tree with the best bin first

(BBF).

A modified voting approach called "Nearest Neighbor Distance Ration Scoring"

(NNDRS) is aggregating the scores of candidate images, and the aggregate scores

are then sorted into descending order. After that, the images with top rank are

retrieved. In [76], a general image CBMIR system is introduced with three features

for representing the images in the feature space. Color and texture features are
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considered low-level, while the structure of the binary tree is utilized to capture

higher levels. The Human Visual System (HVS) is utilized for the features of color,

while wavelet decomposition is employed for the features of texture.

Many upgrades to the CBMIR system have been created to improve the effec-

tiveness and retrieval performance, which can be at the stage of pre-processed or

extracted features [109, 57]. Texture-based features are well accepted and popular

among researchers worldwide, according to the extensive medical image retrieval lit-

erature [103, 112, 58, 71, 80]. However, medical imaging becomes more sophisticated

over time as it attempts to gather as much information about the patient’s anatomy

as possible.

The fast rise of digital, multimedia, and storage systems in recent years has

resulted in massive image and multimedia warehouses. The advances in digital

storage and information retrieval benefit clinical and diagnostic studies. Diagnostic

and investigative imaging systems in hospitals generate a massive amount of images,

which contributes to the expansion of medical image archives. Also, the retrieval

of medical images based on textual details like tags and manual annotations is

poor in productivity since they require manpower, clinical skills, and time. Medical

image retrieval systems, which can retrieve and identify the images automatically

based on the features coming from the images themselves, are so critical. The most

difficult problem in CBMIR systems remains the reduction of the semantic gap.

This gap occurs between the visual input of the HVS and the imaging system when

information is lost during the process of representing the image from high-level

semantics to low-level comprehension features [61].

As a result, developing a powerful CBMIR system based solely on texture is

insufficient. It is, therefore, necessary for the hour to build a system for the multi-

dimensional retrieval of medical images that will combine multidimensional informa-
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tion, for example, texture, edge, and shape. It is considered the fundamental com-

ponent of any CBMIR system that compares an image to an image in the dataset

to determine how similar they are and to find matching pairings to the image [4, 5].

Traditional methods rely on low-level extraction by assessing their colors, textures,

forms, and spatial structure from medical imagery. These are all low-level features

that frequently do not accurately reflect semantic notions in images. Using these

features for retrieval usually yields unsatisfactory results.

1.2 Thesis Objectives

Our objective in this thesis is to develop an efficient CBMIR technique that is

able to achieve high accuracy in the retrieval of medical images that have different

modalities with less retrieval time, reduce the semantic gap problem, and represent

the medical image with a low-dimensional feature vector.

The semantic gap will be reduced by either incorporating domain-specific knowl-

edge or employing machine learning techniques to develop intelligent systems capable

of acting like the HVS.

Machine learning technology has evolved dramatically, and deep learning sys-

tems have been a breakthrough, where deep learning includes numerous algorithms

of machine learning for modeling abstractions of high-level data [15] by employing

a deep structure that contains multiple nonlinear transformations. Deep learning

is modeled after the human brain [128], whose architecture is complex and pro-

cesses information through transformation composed of multiple layers. Thus, deep

learning led to learning the complex features from raw images by a machine (deep

networks) without using handcrafted features, this enables us to automatically get

feature representations by using several abstract levels to automatically learn fea-
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tures by exploring deep structures.

The use of pre-trained Convolutional Neural Network (CNN) model features

has lately achieved superior performance and flexibility than classical descriptors in

common image retrieval applications due to the quick advancement of deep learn-

ing. (e.g., image retrieval or object recognition). Rich image semantic information

is provided by this feature, which is crucial for improving the precision of image

retrieval. Also, recent research has shown that deep learning systems can effectively

implement image and video classification [8, 140, 55], visual tracking [134], speech

recognition [48], and natural language processing [142].

1.3 Thesis Contributions

The main contributions of our thesis are summarized as follows:

1. Presented an overview on modern CBMIR methods after searching and study-

ing the topic thoroughly as shown in Chapter 3.

2. Proposed an efficient medical image retrieval method (RbQE), which expands

the query in a new automated way as illustrated in Chapter 4.

3. Use the pre-trained deep convolutional neural networks (AlexNet, VGGNets,

and ResNets) as feature extractors that describe and represent medical images

to obtain complex and high-level features that have the best ability to with-

stand external interferences such as changes in lighting, noise, rotation, and

blurred images as shown in Chapter 5.

4. Extensive tests have been carried out to compare the performance of the pro-

posed method (RbQE with DCNN) with the existing and modern methods,
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and it has been demonstrated that the proposed method exceeds all these

methods in retrieving medical images as shown in Chapter 5.

5. Tested the proposed method on five different modalities of standard and pub-

licly available datasets: TCIA-CT, EXACT09-CT, NEMA-CT, OASIS-MRI,

and KIMIA Path960.

1.4 Thesis Organization

We describe the various medical image datasets used in our experimental evaluations,

hardware and software issues in Chapter 2. In Chapter 3, we define an overview

of modern CBMIR methods. In Chapter 4, we will show an efficient method for

content-based medical image retrieval based on query expansion (RbQE). In Chap-

ter 5, we present the experimental evaluation of the RbQE method. Finally, the

conclusion and future work are presented in Chapter 6.
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Chapter 2

Datasets of Medical Images

The evaluation of CBMIR methods greatly depends on the accuracy and time of the

retrieval for the standard datasets, which have different modalities. As our purpose

is to develop a method that achieves high accuracy in less time, we have compared

the proposed method with modern methods on five publicly available image datasets

with different modalities.

2.1 Medical Image Datasets

There are many medical images in different modalities, and we have used five pub-

licly available standard image datasets in different modalities, such as Computed

Tomography (CT), Magnetic Resonance Imaging (MRI), and histopathological im-

ages, for testing purposes.

2.1.1 TCIA-CT Dataset

The cancer image archive (TCIA), which was compiled by the authors in [32] and

contains a huge number of cancer images [24]. This dataset contains 604 CT images

in DICOM format with series number 1.3.6.1.4.1.9328.50.4.2 of study instance UID

11
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1.3.6.1.4.1.9328.50.4.1 for subject 1.3.6.1.4.1.9328.50.4.0001. The TCIA-CT collecti-

on is divided into eight classes, contains 75, 50, 58, 140, 70, 92, 78, and 41 images

respectively. The TCIA-CT dataset samples for each class can be viewed as shown

Fig. 2.1.

Figure 2.1: Sample images from each class of TCIA-CT dataset.

2.1.2 EXACT09-CT Dataset

The Extracting Airways from CT 2009 (EXACT09) is composed of chest CT scans

[72]. In order that we can assess our suggested features, as indicated in [32], we

picked a CASE 23 test set, a subset for the EXACT09-CT dataset. In this dataset,

there are 675 CT images, organized into 19 classes as outlined in [32]. 36, 23, 30, 30,

50, 42, 20, 45, 50, 24, 28, 24, 35, 40, 50, 35, 30, 28, and 55 are the image numbers

for each class, as shown in Fig. 2.2.
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Figure 2.2: Sample images from each class of EXACT09-CT dataset.

2.1.3 NEMA-CT Dataset

The National Electrical Manufacturers Association [88], which comprises CT im-

ages of various sections of the human body. Following the experimental setup in

[32], the NEMA-CT dataset was create by selecting 315 CT images from CT0001,

CT0003, CT0057, CT0060, CT0080, and CT0083. Furthermore, those images are

separated into 9 classes each comprising 36, 18, 36, 37, 41, 30, 23, 70, and 24 images

representing different regions of the body displayed in Fig. 2.3.

2.1.4 OASIS-MRI Dataset

The Open Access Series (OASIS) with MRI [77], where the OASIS-MRI is considered

a type of medical dataset created by the Image Studies Open Access Series (OASIS)
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Figure 2.3: Sample images from each class of NEMA-CT dataset.

with MRI, within the original datasets, a sectional range of 421 topics between

18 and 96 years can be studied and analyzed. These images were classed into four

classes by authors in [83], with 124, 102, 89, and 106 images in each class, illustrated

in Fig. 2.4.

Figure 2.4: Sample images from each class of OASIS-MRI dataset.

2.1.5 KIMIA Path960 Dataset

The second is the KIMIA Path960 dataset [62] comprises 20 histopathological image

classes created by the epithelial, muscle, and connective tissue set. In addition, the

images of each class have certain characteristics in which there are high intraclass
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differences and certain similarities between different classes. The KIMIA Path960

dataset contains 960 Images, where there are 48 images in each class as shown in

Fig. 2.5.

Figure 2.5: Image from each class of the KIMIA Path960 dataset.

2.2 Hardware and Software Issues

The development and some offline and online evaluations were performed on a com-

puter, with Intel(R) Core(TM) i7-4510U CPU @2.00 GHz processor, 8 GB RAM,

and 64-bit Windows 10 Enterprise LTSC operating system. Software development

was done in spider using OpenCV and Matlab.
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In this chapter, we introduce and summarize how modern CBMIR methods applied

to the mentioned datasets, mentioning the advantages and disadvantages of each

method. Section 3.1 presents the majority of CBMIR methods that is based on lo-

cal descriptors to extract low-level features for representing medical images. While

Section 3.2 presents most of the CBMIR methods that depends on machine learning

and deep learning descriptors for extracting high-level features for representing the

medical images. In Table 3.1, we presented the summarization of the CBMIR meth-

ods in terms of the model, datasets, classification technique, feature vector length,

extraction and retrieval time, and the accuracy of each model.

3.1 Methods of CBMIR based on Low-Level Fea-

tures

In order to enhance the process of identifying dominant features, researchers aim

to provide the best models and descriptors to increase the quality of medical im-

17
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age retrieval. In [33] a new CT image retrieval image descriptor was suggested for

a Local Wavelet (LWP) pattern. Firstly, the decomposition of the local wavelet

takes place in the local pixel area to encode the relationship with the neighboring

pixel. Secondly, the local wavelet was compared to the center pixel’s transformed

values for the encoding relationship between the center and neighboring pixels, and

the LWP pattern for the center pixel was calculated. Thirdly, they generated the

LWP for every pixel of the image and eventually used it as a feature vector to find

the histogram. The LWP feature descriptor was tested using three CT medical

image retrieval studies on three medical CT-image bases (NEMA-CT dataset [88],

EXACT09-CT dataset [72], TCIA-CT datasets [32]), and compared LWP with LTP

descriptors [119], LTCoP [84], LBP [90], and LMeP [84]. From the experiments, the

LWP feature descriptor executes the current feature descriptors for each dataset,

where the LWP is superior to almost every group within each dataset, and the LWP

feature descriptor’s time complexity decreases. The local neighbors that influence

the LWP dimension are only taken into consideration as local neighbors. Experi-

ments and research show that their LWP feature descriptor can be used more easily,

and reliably for medical CT image diagnosis, but the high-level semantic information

is not fully extracted from the image.

A simple method to use the texture features for retrieval of the medical images

has been suggested in [65]. This method is considered more efficient and discriminati-

ve compared to recent methods such as HCSCs [66], where just 21% of the time is

spent in HCSC scattering transform for the image filtering and partitioning opera-

tion. The images in this method are filtered with different filters from Gabor and

Schmid and the filtered images are then divided into patches that do not overlap.

Finally, they used the BoW model to represent the features of images. This method

was applied to two benchmark CT datasets, EXACT09-CT, and TCIA-CT, where
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the experiments showed their superiority compared to the recent methods. However,

somewhat it did not reduce the semantic gap significantly too.

A new descriptor has been proposed in [30] for biomedical images retrieval and

indexing called Local Bit Blane Decoding Pattern (LBDP), where for LBDP binary

pattern creation, in each plane the LBDP transforms the local district, encoding the

relationship between the center pixel intensity value and the values that are trans-

formed. The structure of the LBDP process differs from the existing descriptors of

the features belonging to the image. In their approach, the dimension was depending

on the image bit depth and local neighbors count. So, three tests of the retrieval for

the biomedical images were carried out to assess the improvements and efficiency of

LBDP discriminating in terms of ARP, ARR, and Fscore. Two datasets of CT images

(Emphysema-CT [36], and NEMA-CT) and one MRI (OASIS-MRI) [77] repositories

are tested to prove that LBDP is above these current modern descriptors. The time

to retrieval with LBDP is considerably reduced while simultaneously increasing ef-

ficiency. Furthermore, the outline of the LBDP feature may also be employed in an

invariant face recognition task. But, this approach includes a disadvantage where

the system has relatively low output because the high level of semantical information

is usually not defined as within the mind of the user.

In [52] the authors proposed a new extract approach that relies on the extraction

using the Gray-level Co-occurrence Matrix (GLCM) [44] and the Local Pattern De-

scriptors (LPD) of texture features from medical images. To gain improved retrieval

output on medical images in order to make quick decisions in clinical applications.

The Local Mesh Vector Co-occurrence Pattern Descriptor is presented (LMVCoP).

Through integrating the LPD with the GLCM the LMVCoP extracted textural fea-

tures in the MRI brain images. LMVCoP has been compared to existing descriptors,

such as the LTCoP, LMeP, LBDP, PVEP, and LVP [37], for performance appraisal
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measures. Their outcomes are evaluated in terms of evaluation metric accuracy.

The LMVCoP descriptor has been used on the MR (OASIS-MR) dataset, where

87.57% of ARP was achieved and 53.21% for ARR. The time used for extraction

of features of LMVCoP descriptors is 04.29 s and for retrieval is also 0.21 s which

is considered less. The results of the simulation and the experiments have shown

that the LMVCoP exceeds the other state-of-the-art. Such improvements, however,

have a disadvantage, where the dimension of the feature vector is very large, and it

is highly inefficient to index and match processes.

One aspect of the success of any CBMIR method is its ability on the feature ex-

traction that describes the high-level semantics in images. So, in [63] they suggested

a novel method for biomedical image retrieval utilizing the Zernike Moments (ZMs)

[121]. ZMs belong to the global descriptors group and are orthogonal moments. ZMs

acquire gross image information that extractors of the local feature like LBP, LDEP

[31], and others cannot obtain. This broad perspective is excellent for distinguishing

medical images from various regions of the body precisely. Furthermore, their noise

insensitivity makes them ideal for the retrieving of images that are real-life, which

are commonly harmed by noise. In order to evaluate the method, they have applied

their method using two image datasets, namely EXACT09-CT, and OASIS-MRI

respectively. The experiment showed that when compared to other known features

such as LBP, ULBP, or LDEP the methodology of ZMs-based methods has achieved

high performance and other states of the art recently released methods like SS-3D-

LTP, LBDP, LMePVEP [85] and CSLBCOP [124]. Despite these advantages, it

has some drawbacks. Firstly, the outer circle mapping method has been used for

computing ZMs. The use of outer circle mapping might result in inaccurate im-

age retrieval. Secondly, the images in the classes of both the Emphysema-CT and

OASIS-MRI datasets appear to overlap in the existence of noise, i.e. to fall into an-
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other class, thereby causing incorrect retrieval. Thirdly, fewer features of the ZMs

are used for classification purposes. Finally, in the Emphysema-CT and OASIS-MRI

datasets, tiny images lead to poorer retrieval levels when they may be connected.

In [1] a new method for the enhancement and resolution of the major problems

in [63, 94], and in the majority of modern methods, where Orthogonal Fourier-

Mellin Moments (OFMMs) was suggested. OFMMs have several features, such

as greater information packing power, small feature dimensions, improved image

noise robustness, rotation invariance, and scaling, as a result, they are ideal for

applications of retrieval biomedical images. When compared to other state-of-the-

art methods like (Local Binary Pattern (LBP), Local Ternary Pattern (LTP), Local

Quinary Patterns (LQP), etc..)., this approach is also incredibly efficient since it

requires very few CPU seconds to obtain the top images that are matched to the

query. They have applied their method on four various medical datasets namely

the Emphysema-CT, NEMA-CT, OASIS-MR, and NEMA-MR [89]. The results

show that the rate of retrieval from all current methods for noisy and non-noise

images of each of the four medical test bases improved considerably by around 20%

and 7% (average) respectively, but this method has disadvantages, where the major

difference between multimodal datasets when working with a large dataset may not

be very satisfactory.

A robust descriptor for features named the antithetic isomeric cluster pattern

(ANTIC) was suggested for CBMIR and modification applications in [74]. The AN-

TIC is inspired by isomerism, which uses ANTI and clustering characteristics. It

is able to extract information about the line and corner points in the local neigh-

borhood and therefore provides a robust texture descriptor. In addition, only four

isomeric antithetic patterns are needed for all directional information to be obtained.

By reducing the length of the feature vector, this trait ensures robustness. Further-
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more, the MANTIC, which combines multi-resolution information using Gaussian

filters, also improves its performance. This descriptor has been applied to four bench-

mark datasets MESSIDOR, NEMA-CT, OASIS-MRI, and VIA/I-ELCAP, where the

experiments showed their superiority compared to the recent methods. However, it

did not reduce the semantic gap somewhat, as well as although the length of the

feature vector was reduced to half, but still large somewhat.

In [115], an effective approach has suggested retrieving biomedical images using

the global and local image features. The Local Binary Edge Directional Pattern

(LDEBP) has been developed to extract local features, where information for each

pixel in the image is collected from every direction, i.e. 00, 450, 900 and 1350.

Directional information shall be calculated based on the magnitude of the local

signals code between the central pixel and its directional pixels. All spatial informati-

on is used for the evaluation of four edges for each pixel. Local and shape features of

the image have been derived from the Lower Order Zernike Moments (LZMs) [114].

Once the shape and texture descriptors were integrated, the results were improved.

Such results also demonstrated substantial progress when applied to benchmark

datasets such as Emphysema-CT, OASIS-MRI, brain tumor [19], and compared to

validated approaches such as LBDP, ZM, and LDEP. Yet, there is a downside to

all these enhancements, where the time for extraction and retrieval is comparatively

growing compared to some other approaches.

In [18] a new indexing and retrieval method for medical images was proposed

as a kind of improved CBMIR retrieval. The Local Binary AND Pattern threshold

(TLBAP), as well as the adjacent Local Average Differential Pattern (LANADP),

were proposed as two new descriptor features. Every descriptor has been added to

medical images, every descriptor generates a histogram and at the end, the two his-

tograms are combined in order to create the last features vector. Various description
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patterns, such as the Local Binary Pattern (LBP), are considered to be the binary

pattern threshold for each pixel center in the image, but the TLBAP descriptor im-

proves LBP by using the highest pixel intensity of neighboring pixels in calculating

the threshold value. Then, they perform a logical AND operation between the LBP

pattern and TLBP pattern to generate a TLBAP pattern. Furthermore, the other

descriptor (LANADP) was suggested as a way to extract all dominant features and

reduce the semantic gap by finding the relationship of adjacent pixels to their next

neighbors in the diagonal, vertical, and horizontal directions. They have used three

datasets of biomedical images, namely, NEMA-CT, OASIS-MRI, and VIA/ELCAP-

CT, for testing the efficacy of their method in comparison with the other methods.

All the experiment results of the proposed method were superior. However, all these

improvements in retrieval efficiency have a downside, where the retrieval duration

is significantly longer than the other methods.

A new 3D Local-Oriented Zigzag Fused Pattern descriptor (3D-LOZFP) was

proposed in [45] for the purpose of retrieval of CT images. The three distinct 3D

zig-zag patterns in four directions on a 3D plane are used by this descriptor to encode

the link between the center and the neighboring pixels. In total, there have been

12 effective 3D zig-zag patterns. The 3D plane is created through a Gaussian filter

bank which generates numerous, multi-scale, filtered images. A high-dimensional

vector was produced by this descriptor. The number of features was therefore de-

creased by utilizing a quantization and fusion technique. This method was applied

to two benchmark CT image datasets: the NEMA-CT dataset and the TCIA-CT

dataset. The results of the experiments have shown that this method is highly effi-

cient relative to other recent methods. Although this superiority, this method has

some drawbacks, where it failed to extract high-level semantic information from the

image and the feature extraction process is considered time-consuming.



Chapter 3. Modern CBMIR Methods: Literature Reviews 24

The researchers have continued to improve the methods proposed in [98, 2] in

which a new technique is applied which seeks to reduce semantic gaps and obtain

the best possible results, Therefore, in [107] have been proposed new CBMIR system

that focused on the spatial matching of visual words and a new similarity metric,

the "Skip Similarity Index" (SSI), is efficiently utilized in computing visual word

similarity spatial similarity. The results of the experiment revealed that it’s most

successful in extracting multimodal image datasets from various body organs with

similar anatomical structures. The mean Average Precision (mAP) for the retrieval

process of 69.70% was achieved in the proposed method. Nevertheless, the method

did not achieve a high-precision average retrieval of 50 images on the Kvasir dataset

as opposed to the method in [3] where 74.02% had been achieved, but [107] had

60.48%. Even when comparing the images in the whole dataset to establish simi-

larity, the computational complexity of the suggested technique is substantial when

compared to standard BoVW techniques.

More was made at [108], when a modern medical image retrieval technique was

introduced to retrieve medical images using a topic location feature vector from a

huge multimodal medical image dataset. In order to obtain a topic probability, the

Guided Latent Dirichlet Allocation Model (GuidedLDA) is used, and the suggested

location model is used to determine the location probability. The location model is

depicted in images of each topic as the standard distribution of visual word locations.

The location likelihood of the images was evaluated based on the closeness of the

location of visual words in the established location models. The feature vector

was created by combining the topic and location probabilities of visual words in the

images. The significant position information in the topics has reduced the problem of

the semantic gap, where the images were represented by a low-dimensional location

feature vector. By predicting an image label using the topic-location feature vector,
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search times have been decreased by avoiding a full search for images that are similar

over the whole dataset. The location-weighted precision (wPrecision) was introduced

and became a better way of evaluating the normal precision metric set of medical

images. Experiments demonstrate that including spatial information in the topics

improved the performance of CBMIR for a medical image when compared to other

modern retrieval systems for medical images. Despite its accuracy, this approach

has a disadvantage in that it requires a large amount of quality-labeled data for the

generation of models, which is difficult to obtain.

In [56] the authors introduced a method of CBMIR, where this method is com-

posed of two phases: enrollment and querying. Firstly, the Discrete Wavelet Trans-

form (DWT) coefficients were calculated for each inbound image with four types

of Haar [11, 17], Daubechies [22, 129, 139], Coiflet Wavelets [51], and the most

suitable type of wavelet for tested and compared retrieval system for each inbound

image. Then, from wavelet coefficients, the Block Truncation Codes (BTCs) have

been extracted. The suggested method was also enhanced with various scanning

techniques. Rasters, zigzags, Morton, and Hilbert scans were used to split the im-

age into subblocks to match BTC. The derived codes are then stored as a dataset

of the feature vectors. Secondly, the BTCs are extracted from the wavelet coeffi-

cients of the query image during the query process. Eight different distance metrics

were used to measure similarity. In order to test their method, three medical image

datasets were used, namely, 7500 CT brain images collected from a teaching hospi-

tal in Egypt, Kvasir, and VIA-ELCAP. The experimental results indicate that, in

contrast with other methods, the method is very efficient. The proposed method

also showed strong results in the extraction of Morton BTCs from the DB2 DWT

analysis and the best estimation of similarities with the Manhattan distance. Given

these benefits, but with some disadvantages, where the feature vector will be very
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large, in [3] have better accuracy on the Kvasir dataset than this method and the

high computational complexity where this method searches the images in the whole

dataset to compute the similarity.

In [6], a Relevant Feedback Retrieval Method (RFRM) for CBMIR has been

suggested. Here the feedback is based on voting values performed in the image

repository by each class, where a group of color features and texture was extracted

using well-known color moments and GLCM texture features extraction methods

and eight common coefficients of similarity were used as a base for similarity mea-

sures. After a rapid search using a single query that is taken randomly, the images

that have top rank are selected from the dataset to determine the most efficient

coefficient of similarity for the final search process. This method was applied to

benchmark datasets the Kvasir dataset, and the PH2 dataset, where the exper-

iments proved the superiority for improving the retrieval effectiveness of related

medical images. Although this superiority, this method has a drawback, where it

requires labeled data that are not easily available.

Because histological images gave a clear perspective of illnesses, the patholo-

gist thought them to be the sole way to diagnose a disease. Automatic identifica-

tion and extraction of advantageous traits from histopathological images can aid

in the diagnosis, whereas manual assessment of microscopic images requires subjec-

tive pathologist interpretation and takes time. Therefore, a new CBMIR technique

was introduced in [117]. The scheme presented downsamples the image to different

scales, in which LTP is used for each downsampled image for lower, upper, and then

divides into concentrated patches. The scheme defines the images on a different

scale. In order to achieve the high accuracy of the retrieval of histopathological

imagery, they have applied power-law normalization and a Vector of Locally Aggre-

gated Descriptors (VLAD) to get the histogram images, which have high accuracy.
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The experiments have been conducted using the KIMIA Path960 dataset [62] of

standard 20-class histopathological data, and the results demonstrated that their

method achieves better retrieval accuracy than other techniques. However, this

technique has a drawback, as it requires improvements in computation complexity

and performance.

In order to distinguish between normal and abnormal lung CT images, in [138]

the Local Diagonal Laplacian Pattern (LDLP) has been proposed as a novel low-

dimensional descriptor with computational efficiency. In order to define the diagonal

neighbor center pixel relation, LDLP uses a derivative method of the second order.

This led to a feature vector low-dimensional with rich local structure information and

thus the calculation costs were significantly reduced. First, the feature histograms

for the chest CT image slices of the EMPHYSEMA dataset were identified. Then the

statistical method ANOVA was also used for measuring and analyzing the distance

between normal and emphysematous tissue features. In addition, a classification of

four-class has been produced using the classification of a neural artificial network. In

the end, the results of the experiment have been compared with prominent methods

like LBP, Local Tetra Pattern (LTrP) [82], Local Diagonal Extrema Pattern (LDEP)

[31] and have shown high accuracy compared with them. This method failed to fully

extract the high-level semantic information.

3.2 Methods of CBMIR based on High-Level Fea-

tures

Hand-crafted features can negatively influence medical image retrieval. So, we have

found in [66] a unique feature for medical imaging, where a Histogram of Com-

pressed Scattering Coefficients (HCSCs) is suggested. Their method works as fol-
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lows: First, it was necessary to create invariant representations of its translation

scattering transformation to a medical image. Second, they employed the BoW

frame to drive the histogram as a feature vector after the compression process.

Thirdly, to assess the features efficiency of the HSCSs, their method was applied

using three CT image datasets, namely NEMA-CT, EXACT09-CT, and TCIA-CT

respectively. The result of the experiments proved that their method has achieved

high performance compared to many features, such as LWP, LMeP, SS-3D-LTP, [86],

and LBP. Despite these advantages, it has some drawbacks. Firstly, the HCSC used

partial image information as it allows only one path of projection for compression.

Secondly, the time consumption arising from the derivation of the codebook used in

the BoW model due to the clustering process affected the efficiency of the HCSC

adversely.

Due to the restrictions in [66] which influence the results’ accuracy. A novel

and integrated scattering feature for the retrieval of medical images was thus pro-

posed in [64]. The method proposed combines two types of compressed dissemina-

tion data from a variety of points of view, namely Data Concentration (DC) and

Canonical Correlation Analysis (CCP), where the feature presented takes account

of the relevant scattering data capable of high-level representations of the original

medical image. For the validation of the method, two of the CT image datasets,

EXACT09-CT, and TCIA-CT, have been used in their process. The experiment

results demonstrated high performance compared to other current featured meth-

ods including LWP, HSCSs, LMeP, SS-3D-LTP, and LBP. Their system has proven

high performance. Given these benefits, it has also some disadvantages because the

application of the scattering transformation is often time-consuming.

A new method characterized by encoding the relationship among neighbors was

suggested in [39], where the method takes into account multiple image dimensions,
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in order to encode information on the local depth. It also searches for directional

edges and retrieves local information in many directions. This method was applied

to three benchmark datasets MESSIDOR (Retinal images) [27], OASIS-MRI, and

VIA/I-ELCAP (CT images) [125] respectively. The result of the experiments proved

the superiority of this method to retrieve images accurately compared to other recent

methods, where the other methods considered the one-dimensional image informati-

on in most literature for encoding, resulting in less accuracy for retrieval. For

example, LMeP encodes the neighboring neighbors’ relationship, and LBP encodes

the neighbor’s relationship to the center pixel. Although it has this superiority,

this method has some drawbacks, including a high-dimensional feature vector that

leads to an increase in computational complexity and a failure to fully extract the

high-level semantic information from the image.

In [94] the authors proposed a method that utilizes two forms of profound neural

network techniques: a supervised model of learning for Convolutional Neural Net-

works, (CNN) and a non-supervised model of training, is Stacked with Denoising

Autoencoders (SDAE) to represent the most discriminatory features of medical im-

ages. In addition to indexing all images to look for related images. For the first time,

they employed Preferential Learning technology (PL) to learn and train a model ref-

erence image capable of generating a list of the ranked image of similarities from the

dataset of the medical images. They have carried out a great trial of three datasets

of different complexity levels (NEMA-CT image dataset, image dataset OASIS-MR,

dataset TCIA-CT) to investigate whether the method proposed would provide re-

liable output over medical datasets of various formats and types of imagery. The

method is compared with the descriptor for the local binary pattern in [90]. The

results of the experiments have shown that this method makes all datasets with

high accuracy in comparison to other modern technologies and reduces computing
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complexity by utilizing the Preference Learning (PL) model as a supervised ranking

algorithm. This method also has a disadvantage, where the deep neural networks

need to be fine-tuned with large-scale biomedical images acquired to extract more

professional features.

The majority of the conventional methods in CBMIR perform fairly poorly be-

cause they often do not define the user’s high-level semantic data. Finally, the rapid

development of deep learning has brought higher performance and versatility than

traditional descriptors in standard image retrieval tasks to features obtained from

pre-trained CNN models. In [21] a new CBMIR (CNN) and Hash coding framework

has been built. The new framework uses a Siamese network that uses image pairs

(similar and dissimilar) to generate images of the same class and uses a contrasting

loss function and weight sharing to learn how to create images of the same class.

The CNN is used to extract features from each of the network branches and reduces

via hash-mapping the dimension of the features vectors. During training, a novel

loss function has been created, which would make the feature vectors more included

and allow real value outputs to approximate the required binary values. The trained

network generates the compact binary hash code of the image query and is compa-

rable with the hash code of the dataset images during the retrieval process. Two

medical image datasets were used: the (VIA/I-ELCAP) and the TCIA-CT [120].

Experimental tests have proven that this method is better than the current solu-

tions to CNN and hash. Also, in comparison with the conventional CNN methods in

which the Siamese network is paired with the hash system, the solution is superior.

The authors in [95] wanted to address the limitations of current handcrafted

methods of feature extraction. So, a new feature learning method was thus suggested

to address these limitations and extract robust features from medical scans. The

proposed feature learning method is separated into two phases: the first is an IR-Net
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(Image Reconstruction Network), which is meant to reconstruct the supplied input

image using a unique deep network encoder-decoder. The suggested IR-Net was

utilized as a new encoder network to encode the image to a variety of features and to

reconstruct the input image using a new network of decoders. They have shown that

the encoded features represent the input image in a strong way if the input image is

properly reconstructed. In the second phase, these features that are encoded are used

in the retrieval of medical images. In three medical image datasets, they assessed

the output of the method, namely OASIS-MR, ILD [29], and VIA/I-ELCAP CT. In

comparison with the existing methods, the new methodology exceeded them with

the accuracy of the results, but this method has some limitations; it is not viable for

multimodal medical image retrieval because they developed a CBMIR system that

retrieves medical images that have a disease close to the input medical image.

A new deep hashing method is suggested in [99], in which the operations of deep

extraction, binary code learning, and deep hash function learning are conducted

under supervision. The discreet restricted objective function in the learning of the

hash code is particularly iteratively optimized so that the binary code may be solved

without the requirement for relaxation. Semantic similarity is retained in the mean-

time by exploring supervision information in discreet optimization in order to apply

a principle of graphical regularization to the neighborhood structure of the train-

ing data to conserve them. Furthermore, for re-ranking the images a new scheme

to refine the measure of similarity by considering the Euclidean Distance among

realistic descriptors and their category data between these images is proposed to in-

crease the ranking of the returned medical images with a specific hamming distance.

This method was applied to the pulmonary nodule image dataset (LIDC-IDRI) [10],

where the experiments show its superiority compared to the recent methods. How-

ever, it requires a sufficient amount of excellent quality labeled data, which are not
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readily available, to create models.

In [98] a great solution was presented to enhance the efficiency of CBMIR with

the application of a deep learning system for the purpose of CBMIR by training a

Deep Convolution Neural Network (DCNN). Introduced two methods for medical

image retrieval; one is a class prediction by the trained network to predict the class

of the query image and then search for images that are appropriated in that specified

class. The second method is to not combine any information on the query image

class and check for appropriate images in the entire dataset. The presented method

reduced the semantic gap by learning discriminating features directly from images.

The suggested method can achieve a mean average precision of 69% and average

classification accuracy of 99.77% in the retrieval task. The most suitable method to

obtain a multimodal medical images dataset for various body parts is the method

provided, but this method has an adverse effect whereby fully trained DCNN-based

methods demand a large collection of labeled medical images to achieve their full

potential and the feature dimension is 4096, that is highly time-consuming.

In [3], they suggested a method for solving the CBMIR system problem based

on handmade features, i.e. inefficient content modeling, high dimensional features,

and extraction of unnecessary and less useful features. An effective method has

been used to represent images utilizing outstanding convolutions features. They

worked on AlexNet’s initial convolutional layer of kernels, demonstrating how vi-

sual content may be produced successfully by collecting color and texture features.

Two measurements, texture sensitivity, and color sensitivity were used to study the

properties of these kernels. On the basis of these discoveries, three different clusters

divided the convolutional feature space, where there are a number of kernels with

similar features in each of these clusters. These individual kernel sets are utilized

to extract texture and color features from the image and to add them to a single
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feature map termed the Spatial Maximum Activator Map (SMAP). The features

of these maps have been recorded in a histogram so that their spatial layout infor-

mation is also obtained with a structured pooling technique without increasing the

dimensions of the features. This allows them to extract various strengths from the

features of texture and color while clustering the space for convolution. Furthermore,

the Spatial Maximal Activator map (SMAP) approach enables them to choose the

most discriminative features. The Kvasir dataset [96] comparison of the classifica-

tion performance indicates that this method has the best precision of 75.4, also the

comparison of the retrieval performance with existing feature extract on methods

shows that this method has the best retrieval performance with Average precision

retrieval of 74.02 @50 but this method has a drawback, where a huge collection of

labeled medical images is required for training to reach its full potential.

In [2], a new method has been introduced to reduce the semantic gap issue and

achieve high accuracy in the retrieval of multimodal medical images over existing

state-of-the-art methods. The suggested solution was tested with the two standard

datasets, namely, the Kvasir dataset, and the IRMA 2009 dataset [133]. It was an

efficient way to pick a perfect subset of features from pre-trained convolutional CNN

layers. They found that the chosen subset of features is much better than the entire

set of features in large datasets of medical image retrieval. They have also suggested

a highly efficient method for depicting such features as compact binary codes using

Fast Fourier Transform (FFT) to reduce the search space and enhance medical image

retrieval efficiency. The vector of the feature is patronized as a one-dimensional

signal and transformed by FFT into the frequency domain. Then, they transformed

the feature vector into bits on the basis of their selection, using a simple linear

transformation, by selecting the necessary number of frequency components and they

used the binary codes obtained to provide hash codes and allow efficient retrieval of
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big data sets. This proposed hash code method was compared extensively with many

state-of-the-art methods, several of which outperformed significantly. However, with

very shortcodes, the proposed method was not successful, mainly because the Fourier

spectrum was easy to convert to binary codes and also the method did not obtain

a high average accuracy at a 50-image accuracy in the Kvasir data set compared

with the approach in [3], where that approach reached 47%, but in [3] 74.02%. The

performance was in addition low compared to Spherical Hashing (SpH) [47], Sensitive

Hashing (DSH) [54], and Random-Rotation Principal Component Analysis (PCA-

RR) [40]. However, efficient FFT-based code computation time makes them more

suitable for use.

In [42], an efficient and scalable histopathological image retrieval method was

suggested for the learning of binary representation using Densely Connected Multi-

Magnification Hashing (DCMMH), where in contrast to earlier works, which focuses

only on one magnifications level. So, this method cooperates with many magnifica-

tion levels, to learn hashing functions based on CNNs. There is a reciprocal learning

guidance model focusing on image data of high-low magnification pairs. To fully uti-

lize cross-magnification information, a dense-connected architecture has been imple-

mented. This method has been applied to two benchmark datasets BreakHis [113],

and PLOSONE [9]. In comparison to previous hasher methods based on handmade

features, top performances were achieved in these experiments. So, this method

contributed to decreasing clinician manual effort in the diagnosis of the histopathol-

ogical images. However, retrieval by cross-magnification is not available. Although

the binary codes for histopathological images are employed by various magnification

levels. Furthermore, computational complexity is increased.

Also, the histopathological image contains more information that can be used

in the early detection of breast cancers, and it’s important to learn the compact
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representation of histopathological image retrieval. So, in [43], a new framework

was presented for learning binary histopathologic image codes. This framework is

multi-Magnification Correlation Hashing (MMCH), in which both low-magnification

and high-magnification data are used to learn discriminatory features. In particular,

they built a patch-link graph with local patches extracted randomly from the labeled

high-mag and low-mag images and propagated the link between high-mag images

and low-mag patches to assess the semantic similarity of local patches. Similarities

are then kept on the patch link graph and global labels to learn the binary codes of

local patches. Furthermore, L2,1 hashing function constraints have been introduced

to select the more informative features from the original visual representation, where

L2,1 constraints get better discrimination for the feature. They used the BreakHis

dataset and the PLOSONE dataset to perform the experiments, and the experiments

have shown that their method has improved accuracy through a series of cell-based

and comprehensive approaches to histopathological image retrieval tasks. Despite

these advances, this method has a drawback: distance computation time is O(n2),

and the query is not as effective as holistic-based methods when dealing with high-

resolution data.

A Deep Convolutional Hash (DCH) method has been proposed in [105] for the

encoding of images in binary codes. There is an embedded LBE layer available

on the proposed network, and it may be trained "point-wise." The joint objective

optimization function has also been constructed to encourage the network to learn

discriminating representations from label information and decrease the gap between

embedded features of low dimensions and necessary binary values. Binary encoding

for new images has been provided through network propagation and the quantific-

ation of the LBE layer output. This method has been applied to the histopathol-

ogy image dataset that has been created by them, including lung cancer images
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and skeletal muscle images. From the experiments, superior performances in the

histopathology image dataset demonstrate the efficacy of this method. However,

the optimization is currently eased through the use of the non-linear (tanh) satu-

ration function, which might restrict the efficiency of the binary codes learned. In

addition, noise from labels would have a detrimental effect on model learning and

the ultimate diagnosis of disease because no noise is assumed by the method for

image labels.

The researchers in [20] suggested a method for improving medical decision sup-

port systems, i.e. breast cancer diagnosis and including AL/RF in the medical

imaging region, by utilizing the Medical Active leaRning and Retrieval (MARRow).

In order to minimize many of the disadvantages in terms of efficiency and quality of

the system, the commission introduced an AL strategy that was suitably incorpo-

rated into the CBIR core mechanism. Since their AL strategy chooses a few more

informative images based not just on similarity, but also on the degree of uncertainty

and diversity. These selected images will benefit more from literature than those

from the same class. This strategy has achieved a high level of improvement over the

most advanced methods, achieving a precision increase of up to 87.3%. MARRow

also showed a clear and acceptable rate of growth over the course of the learning

iterations. The time of the learning procedure is reduced by this method, as it elim-

inates the involvement of the expert in the analysis process (eliminating up to 88%)

as the expert doesn’t have to annotate (correct) the labels on all samples as needed

by the work of literature. They adopt a more rigorous class approach (i.e., provide

fewer misclassifications) as more information samples are chosen for learning. How-

ever, complexity is increased in this method by its intrinsic inter-class similarity

which leads to the process of fine-grain annotations to make a more complicated

difference between relevant and irrelevant pictures.
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In [131] a similarity measurement method is suggested, which integrates deep

features for a mammogram. The images are processed first in advance to extract

low-level data, including content and location, but before extracting location fea-

tures, the registration is done using the standard image. Then, the following are

developed to extract the deep features that are regarded to be very effective: the

Stacked Auto-Encoder Network (SAE), the Convolutional Neural Network (CNN),

and the Deep Belief Network (DBN). The similarity of the contents and the deep sim-

ilarities are computed using the ED among the query and the images in the dataset

separately, however, for the similarity of the location, the intersection ratio to the

mass regions is calculated. The similarity between content, location, and deep sim-

ilarity is ultimately merged to form the image fusion similarity. This procedure has

been applied to 740 cases of mammograms, which are 740 MLO mammograms [91]

from northeast china and their corresponding diagnostic reports. The experiments

demonstrated the superiority in enhancing the efficacy of medical image retrieval

and reducing the issue of the semantic gap. Although this superiority, this method

has a high dimensional feature vector that will lead to increasing the computational

complexity.

Individual features of a multi-phase CT image to indicate the region that is

abnormal from the liver and apply it in an accurate retrieval of liver CT images were

suggested in [78]. Two methods for retrieval of liver lesions were suggested. In the

first method, for every imaging phase, individual features were selected to enhance

the lesion class separability. In the second method, an 87 × 1 element vector was

presented to represent different regions of an abnormal region. The correlation graph

distance [102], which represents the feature vector’s nonlinear structure, was also

utilized to calculate the distance between an input image and other dataset images.

Their method has been applied to 411 CT liver data consisting of three phases
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[130, 136]. From the experiments, has been demonstrated that the use of a manifold

image distance measurement scheme enhances CBMIR ’s discrimination efficiency.

Furthermore, when compared to recent methods, a more complicated feature vector

enhances the outcomes. and on average, the overall recall of their results with

the proposed features vector was increased by 7.5%. However, this method needs

additional features to replace the existing huge multi-phase data feature vector and

needs to obtain a larger dataset and test the method’s efficacy.

Due to their different fracture locations, the retrieval of bone images affected by

Avascular Necrosis (AN) is difficult. So, an effective methodology for retrieving AN

image using Deep Belief CNN feature representation has been suggested in [118].

At first, pre-processing takes place for the input dataset. In addition, throughout

the pre-processing step, image noise was eradicated with the use of the Median Fil-

ter (MF) and resized. Then, the features were transmuted to binary codes after

being represented by the (DB-CNN). Ultimately, the calculation of the similarity

was determined using the modified Hamming distance and retrieving the images.

This method has been applied to the (Femur, Humerus, and Knee) of the AN im-

ages dataset, where the experiments showed its superiority compared to the recent

methods. However, it is limited to this dataset, and getting a large number of data

for analysis is very difficult. So, the real data is very limited in this research.

The images in the current methods are first identified and then categorized and

this resulted in increasing the period for image retrieval as the entire dataset must be

searched for performing the retrieval. So, a Grey Wolf Optimization-Support Vec-

tor Machine (GWO-SVM) method was proposed in [16] which classifies the query

image’s class at first. In addition, only the query image dataset can organize the

retrieval process. The GWO algorithm makes a distinctly improved value for the

SVM classification for the solved and optimized parameters. Therefore, it is evi-
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dent that the retrieval rate is high after the classification is performed relative to

the current methods by defining the retrieval levels. This has been applied to 7641

medical CT images that include 27 classes of different body parts. Tests have shown

superior accuracy classification with a 97% and improvement in the accuracy of re-

trieval compared to current methods. However, this method has a high dimensional

feature vector which considers a drawback.

In [143] the authors proposed an effective indexing and retrieval framework using

deep features. The proposed system aims to produce the most effective and least

parameterized hash codes by using image features. For this reason, deep features

are obtained from medical images using the CNN model. The length of the acquired

raw deep feature vectors for an image is relatively inefficient for retrieval speed.

Feature reduction methods are used for the most effective reduction of the length of

the deep feature vector. The main reason for producing a reduced class-driven hash

code with feature selection algorithms is the drawbacks of medical image datasets.

These drawbacks prevent the CNN output from being used directly as hash code.

The performance of the proposed method is tested on NEMA MRI and NEMA CT

datasets.

In [81] the authors proposed a DCNN model developed for classification and

image retrieval purposes. Deep learning techniques obtained deep features from

different abstraction levels represented using multiple hidden layers. This ultimately

improves retrieval performance. They developed a framework based on a multi-

layered CNN to represent medical images as deep features which are used for retrieval

purposes. The proposed network’s architecture is similar to Alexnet. The extracted

deep features are used to calculate the similarity index between the images using

distance measures and based on the similarity index, retrieval is done. By using a

data augmentation technique the model achieved better retrieval accuracy.
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Table 3.1: Summarization of CBMIR methods in terms of the model, dataset, classification

technique, feature vector length, extraction and retrieval time, and the accuracy of each

model.

Paper Model Dataset Classification Feature Extraction Retrieval Accuracy (%)

Technique Length Time in(s) Time in(s) ARP ARR F-measure mAP

[33] LWP

NEMA-CT

Manually

256 98.25 0.45 95.32 @10 31.33 @10 47.16 @10 -

EXACT09-CT 256 ≈ 150 ≈ 1 83.00 @10 24.87 @10 38.27 @10 -

TCIA-CT 256 ≈ 140 ≈ 0.8 88.42 @10 13.09 @10 22.8 @10 -

[66] HCSCs

NEMA-CT

Manually

200 384.1 - 98.33 @10 33.64 @10 50.13 @10 -

EXACT09-CT 200 384.1 - 91.50 @10 28.83 @10 43.84 @10 -

TCIA-CT 200 384.1 - 95.12 @10 14.52 @10 25.20 @10 -

[65] Filtering+
EXACT09-CT

Manually
- - - 92.97 @10 29.31 @10 44.57 @10 -

Partitioning+BoW TCIA-CT - - - 96.32 @10 14.67 @10 25.46 @10 -

[64]

ST −DCavg EXACT09-CT

Manually

200 384.1 - 92.09 @10 29.07 @10 44.19 @10 -

ST −DCmax EXACT09-CT 200 384.1 - 91.93 @10 28.98 @10 44.07 @10 -

ST − CCAh EXACT09-CT - 14.98 - 91.92 @10 28.90 @10 43.98 @10 -

ST − CCAv EXACT09-CT - 14.98 - 93.35 @10 29.44 @10 44.76 @10 -

ST −DCavg TCIA-CT 200 384.1 - 95.80 @10 14.65 @10 25.41 @10 -

ST −DCmax TCIA-CT 200 384.1 - 95.71 @10 14.58 @10 25.30 @10 -

ST − CCAh TCIA-CT - 14.98 - 96.33 @10 14.68 @10 25.48 @10 -

ST − CCAv TCIA-CT - 14.98 - 96.45 @10 14.71 @10 25.52 @10 -

[30] LBDP

Emphysema-CT

Manually

256 2.39 0.06 ≈ 50@100 ≈ 89.5 @100 ≈ 64.2 @100 -

NEMA-CT 256 606.20 0.43 99.55 @5 75.83 @50 67.64 @50 -

OASIS-MRI 256 56.78 0.33 ≈ 58 @10 ≈ 24 @10 ≈ 34 @10 -

[52] LMVCoP OASIS-MRI Manually - 4.29 0.21 87.57 @10 53.21 @10 61.04 @10 -

[39] (MD)2MaMEP

MESSIDOR

Manually

2560 - - 56.93 @5 - - -

OASIS MRI 2560 - - 62.49 @10 - - -

VIA/I-ELCAP 2560 - - 93.36 @10 60.40 @10 73.35 @10 -

[94]

CNN+PL NEMA-CT

Manually

4096 - - ≈ 90 @50 ≈ 69 @50 ≈ 78 @50 -

SDAE+PL NEMA-CT 256 7.77 3.72 ≈ 90 @50 ≈ 69 @50 ≈ 78 @50 -

CNN+PL OASIS-MRI 4096 - - 68.8 @50 32.8 @50 44.4 @50 -

SDAE+PL OASIS-MRI 256 2.88 3.11 61.1 @50 28.9 @50 39.24 @50 -

CNN+PL TCIA-CT 4096 - - ≈ 90 @50 ≈ 58 @50 ≈ 70 @50 -

SDAE+PL TCIA-CT 256 6.24 4.50 91 @50 59.1 @50 71.7 @50 -

[63] ZMs

Emphysema-CT

Manually 12 0.85 0.24

44.88 @100 79.48 @100 57.37 @100 60.23 @100

Noisy 43.90 @100 78.50 @100 56.39 @100 59.16 @100
Emphysema-CT

OASIS-MRI

Manually 12 16.85 1.37

42.81 @100 40.52 @100 41.63 @100 49.41 @100

Noisy 42.39 @100 39.54 @100 41.50 @100 48.72 @100
OASIS-MRI

[74] ANTIC

MESSIDOR

Manually

2048 - - - ≈ 54 @10 - -

NEMA-CT 2048 - - 96.79 @10 - - -

OASIS MRI 2048 - - ≈ 56.5 @10 - - -

VIA/I-ELCAP 2048 - - ≈ 91 @10 ≈ 9 @10 ≈ 16.38 @10 -

To be continued
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Table 3.1 (continued)

Paper Model Dataset Classification Feature Extraction Retrieval Accuracy (%)

Technique Length Time in(s) Time in(s) APR ARR F-measure mAP

[115] LDEBP+

Emphysema-CT

Manually

85 11.85 0.49 ≈ 52 @100 ≈ 87 @100 ≈ 65 @100 -

OASIS-MRI 85 23.51 1.95 71.08 @100 30.41 @100 42.6 @100 -

LZMs Brain-Tumor 85 185.72 2.81 ≈ 51 @100 - -

[1] OFFMs

Emphysema-CT

Manually 16 0.26 0.11

45.31 @100 80.34 @100 57.94 @100 62.35 @100

Noisy 45.03 @100 79.82 @100 57.58 @100 62.39 @100
Emphysema-CT

NEMA-CT

Manually 16 65.42 1.46

68.03 @100 97.24 @100 80.05 @100 99.12 @100

Noisy 48.51 @100 74.12 @100 58.64 @100 76.52 @100
NEMA-CT

OASIS-MRI

Manually 16 7.49 0.67

42.52 @100 40.17 @100 41.31 @100 51.09 @100

Noisy 33.76 @100 30.39 @100 31.98 @100 35.75 @100
OASIS-MRI

NEMA-MR

Manually 16 10.14 1.17

80.30 @100 100.00 @100 89.07 @100 100.00 @100

Noisy 56.82 @100 76.32 @100 65.14 @100 78.82 @100
NEMA-MR

[18]

NEMA-CT

Manually

512 - 0.1160 96.34 @10 11.76 @10 20.96 @10 -

TLBAP + OASIS-MRI 512 - 0.0714 63.39 @10 58.11 @10 60.64 @10 -

LANADP
VIA/I-ELCAP 512 - 0.1760 43.80 @100 43.81 @100 41.44 @100 -

[21]

Siamese TCIA-CT [120] Siamese 48-bits - 0.382952 - - - ≈ 80 @100

network+
VIA/I-ELCAP

network+
48-bits - 0.382952 85.7 @50 - - 81.63 @100

hash coding hash coding

[95] IR-Net

OASIS-MRI

Manually

512 - - 70.45 @10 - - -

VIA/I-ELCAP 512 - - 99.36 @10 99.36 @10 99.36 @10 -

ILD 512 - - 80.87 @10 - - -

[45] 3D-LOZFP
NEMA-CT

Manually
192 1.73 - 84.37 @30 69.30 @30 76.1 @30 -

TCIA-CT 192 1.73 - 93.17 @30 63.36 @30 75.43 @30 -

[99] deep hashing LIDC-IDRI Radiologists 64 - - - - - 63.51 @100

[98] DCNN Multimodal DCNN 4096 - - 71.50 @21 - - 69 @21

[3]
AlexNet

Kvasir SVM 96 - - 74.02 @50 - - -
and SMAP

[2]
CNN Kvasir

-
128-bits - - 46.5 @50 - - -

and FFT IRMA 2009 128-bits - - 77.00 @50 - - -

[107] BoVW

Multimodal

BoVW

- - - 80.50 @21 - - 69.70 @21

and SSI

Kvasir - - - 60.48 @50 - - -

IRMA 2009 - - - 83.9 @50 - - -

[108]
Topic and Multimodal Topic and 24 - - 88.75 @21 - - 86.74 @21

Location IRMA 2009 Location 57 - - 97.5 @10 - - -

To be continued
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Table 3.1 (continued)

Paper Model Dataset Classification Feature Extraction Retrieval Accuracy (%)

Technique Length Time in(s) Time in(s) APR ARR F-measure mAP

[6] RFRM Kvasir Medical Experts 18 - - 85 @10 - - -

[56] DWT+

Kvasir Manually - - - 55.3 @50 - - -

VIA/I-ELCAP - - - - 86.7 @50 - - -
BTCs

[117] LTP KIMIA Manually
- - - 95 @10 20.21 @10 33.33 @10 -

+VLAD Path960 - - - 84.65 @20 36.02 @20 50.71 @20 -

[42]
DCMMH-All

BreakHis 40×

Manually

16-bit - - - - - 95.41 @5

BreakHis 100× 16-bit - - - - - 93.12 @5

(40-100-200-400) BreakHis 200× 16-bit - - - - - 96.55 @5

BreakHis 400× 16-bit - - - - - 95.14 @5

DCMMH PLOSONE 200× 64-bit - - - - - 32.46 @5

[43]

MCCH-40-200 BreakHis 40×

Manually

16-bit - - - - - 92.52 @5

MCCH-100-200 BreakHis 100× 16-bit - - - - - 91.52 @5

MCCH-200-400 BreakHis 200× 16-bit - - - - - 89.74 @5

MCCH-200-400 BreakHis 400× 16-bit - - - - - 88.76 @5

MCCH PLOSONE 100× 64-bit - - - - - 55.76 @5

MCCH PLOSONE 200× 64-bit - - - - - 54.19 @5

[105] DCH
Skeletal Muscle+

Manually 64-bit - - - - - 96 @1000
lung cancer

[20]

LBP-JD I1-VIENNA

K-NN

108 - - ≈ 93.7 @30 - - 97.0 @30

LBP-L2 I2-MIAS 108 - - 100 @30 - - 99.7 @30

Zernike-X2 I3-DDSM 36 - - ≈ 49.4 @30 - - 53.3 @30

Zernike-X2 I4-MIAS- 36 - - ≈ 49.1 @30 - - 52.7 @30
DDSM K-means

Daubechies I5-VIENNA- 16 - - ≈ 61.6 @30 - - 63.1 @30
-L∞ DDSM

[131] SAE+CNN+DBN MLO mammograms Manually - - - 74.5 @15 85 @15 79.4 @15 -

[78] manifold learning CT liver Manually 87 - 16 P=83.6 R=84.2 83.9
-

data

[118] DB-CNN

Femur images

Manually

- - 11 P=92.3 R=81.56 86.6 -

Humerus images - - 9 P=87.38 R=80.23 83.65 -

Knee images - - 7 P=80.5 R=79.9 80.2 -

[138] LDLP
Emphysema-CT

Manually 25-bits - - P=84.21 R=96.67 90.01 -
Slice

[16] GWO-SVM CT scan GWO-SVM - - - - - - 90
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3.3 Literature Reviews Analysis

In this chapter, we introduced a summary of modern methods of CBMIR that

depend on low-level and high-level features. We also presented the advantages and

disadvantages of each method, and we found that most of the methods that depend

on low-level features shared some disadvantages. First, we failed to extract the

high-level semantic information from the image, which resulted in a semantic gap

problem still being found. Second, it has high computational complexity when it

searches the whole dataset to compute the similarity. Third, the feature vector is

very large. For methods of the high-level features, we found that most of them

require an adequate number of good quality labeled data to generate the models,

which are not easily available in the medical domain. In Chapter 4, we will introduce

the proposed a method that exploits the pre-trained DCNN models to solve most

of these disadvantages.
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Chapter 4

Proposed RbQE Method

In this chapter, we introduce a method for content-based medical image retrieval

(RbQE) using a new query expansion method. The query expansion method depends

on the top-rank images in the expansion process, which improves the chances of

obtaining the most semantically related output. The proposed method uses deep

features (AlexNet, VGGNets, and ResNets) to increase the accuracy of retrieval

with less time for CBMIR systems. The expansion method is employed for the first

time on deep features (AlexNet, VGGNets, and ResNets).

4.1 Medical Image Retrieval Method using New Query

Expansion (RbQE)

The proposed method (RbQE) has two important parts, presented in Fig. 4.1. The

first part is a feature extractor, and the second is a method for matching and re-

trieval of medical images. Three deep feature extractors have been used in the

proposed method. Based on pre-trained models, the deep feature extractor can ex-

tract compact and high-level features to represent all images in the medical dataset.

There are two aims of using the deep neural network instead of raw pixels in the

45
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analysis of medical images: the first is to extract invariant features, which are more

robust against different interferences like noise and changes in the light that appear

during the generation of the medical images. Second, there is no need for the deep

feature extractor to be retrained, if trained offline using a huge image dataset with

heterogeneous formats, even in the case of analyzing various types and formats of

medical images. As a result, the used deep model is likely to dramatically increase

computational efficiency and lower calculation costs in comparison to other retrieval

systems that also use deep models.

Figure 4.1: Illustration of the RbQE method.

In addition, the RbQE technique target improving the matching and retrieval in

the CBMIR by expanding the deep features of the original query and the construc-

tion of a new query. The RbQE method is based on two search procedures: rapid

and final. Firstly, a rapid search of the dataset is used to retrieve the top-ranked
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images of the original query from each class of the dataset and then will form a

New Query Expansion (NQE) for each class. Secondly, in the final search, the im-

age that is most similar (NQE) to the query images is taken and used as the Final

New Query Expansion (FNQE), which is one of the main benefits of our suggested

method. Fig. 4.2 illustrates the proposed algorithm for the RbQE method. The

next subsections provide more information on these feature extractors and query

expansion methods.

Algorithm RbQE method
Input: Single random image form the dataset as query

Output: Top n similar images

1: Start

2: Extract deep features for all images in dataset

3: for j = 1 : m do . where m refer to all classes in dataset

4: Retrieve the top n similar images to query image

5: The values of the mean features are computed for the top n relevant images

6: Reformulate the NQE by using the values of the mean features

7: end for

8: end for

9: Retrieve the most NQE similar to query image and used it as FNQE

10: Use the FNQE to retrieve the top n similar images

11: end start

Figure 4.2: RbQE method algorithm.
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4.1.1 Deep Feature Extraction

We used more robust and efficient deep features to extract more discriminatory and

high-level features for medical images, thus minimizing interference problems. Deep

learning has gained enormous popularity recently, with promising applications in a

variety of areas [127]. The fundamental idea behind deep learning hasn’t changed,

despite the fact that numerous architectures have been proposed and put into prac-

tice: deep learning is a feature representation learning approach that concentrates

on huge amounts of unprocessed image data and can use different levels of repre-

sentation. This concept is stable in spite of several models of deep learning that

have been suggested and implemented. Many levels of abstraction allow learning

representations of data by computational models with many layers of processing L

(L > 1), where after the input layer, each layer transforms the representation of the

preceding layer into a more abstract representation, then you can obtain complex

structures indirectly from large format imagery and ideally use them to create the

original image or the image of the query after studying most of distinctive variations

layer by layer.

For medical image retrieval, three types of supervised CNN learning models have

been used as deep neural networks. CNN is a form of neural network that has been

proposed to deal with images and obtain local features located in images. To work

with high-resolution images, CNN has three properties: Firstly, each convolution

kernel has a small function in depth that represents a feature that, despite its small

size, can distinguish between different images. Secondly, the same deep feature

may filter and obtain information from various locations in the input image because

the same convolution kernel is employed by each convolution feature map. Finally,

by subsampling from the convolutional layer to the pooling layer, the image’s di-

mensionality is reduced and computing efficiency is increased. Fig. 4.3 shows a
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previously trained Deep Convolutional Neural Network (DCNN) model (AlexNet);

Fig. 4.4 shows the previously trained DCNN models (VGG-19); and ResNets, which

have been trained offline in the ImageNet dataset [28] and contain millions of labeled

images.

Figure 4.3: The pre-trained CNN (AlexNet) on ImageNet dataset.

Significantly deeper neural networks cannot be used in medical image processing.

Since the small distinguishes among identical biomedical images with high-level fea-

tures and most semantical are difficult to differentiate and with greater abstraction,

the small disparity will go away. However, a small difference is particularly essential

in biological images and may be applied precisely to discriminate biomedical images

of several types, such as images from our research from the OASIS-MRI dataset used

in our research. The AlexNet, as demonstrated in Fig. 4.3, is inspired by biological

processes where the object is recognized from the low-level step by step to the se-

mantic level, it is usually made up of four key components: Firstly, the convolutional

layers, which are connected to a limited, mostly human visual system location by a

convolutional kernel and considered the greatest highlight of AlexNet, Secondly, the

activation functions are frequently followed by the convolutional layers, where the
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ReLU (rectified linear unit) activation function is used to extract from the input sig-

nals the more complicated features. Thirdly, the dimensionality of the feature map is

lessened by the pooling layers, while the convolutional layer sensitivity is decreased.

Finally, at the conclusion of the AlexNet structure, the fully connected layer is com-

bined to generate a feature vector, which provides the prediction result. By applying

the backpropagation approach, the loss function between the prediction outcomes

and ground truth is minimized using the AlexNet training procedure until the error

loss is considerably reduced or a certain number of iterations have been completed.

We have used the learned AlexNet as an extractor of biomedical frameworks, utiliz-

ing the fully connected layer-6. Our usage of completely connected layer-6 features,

since various studies have shown that layer-6 features are more efficient than layer-7

features in biomedical image processing [12, 123, 106, 13, 23].

Figure 4.4: The pre-trained DCNN (VGG-19) on ImageNet dataset.

Convolutional networks with extremely deep layers that up to 19 layers (VGG-

19) were employed as a feature extractor, where there are 16 convolutional layers

and 3 FC (Fully Connected) layers, as shown in Fig. 4.4, where the number of

channels is quite small, starting at 64 in the first layer and growing by a factor

of two after each max-pooling layer until it reaches 512. In this network (VGG-
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19), the image was transmitted through a stack of a convolutional layer that is a

composite of filters with an extremely narrow receptive field 3×3 to gripe the notion

of up/down, left/right, and center). The convolution stride was set to one pixel, and

the spatial padding of convolution is 1 pixel 3× 3 convolution layers. There are five

max-pooling layers, each of which was conducted across a 2× 2 pixel window with

stride 2. Three Fully-Connected (FC) layers follow a stack of convolutional layers:

the first two (FC1, FC2) have 4096 channels (features) apiece, while the third (FC3)

has 1000 channels (features), and the soft-max layer is found in the final. Also, here

we have utilized the fully connected layer-1 (FC1) of the VGG-19 as a feature vector

extractor. There are also various studies in which we did show that FC1 features are

more efficient than layer-2 (FC2) features in biomedical image processing, except in

the TCIA-CT dataset, where FC2 features have achieved higher accuracy than FC1

features.

Residual networks (ResNets) [46] are utilized in this thesis for medical image

retrieval. Identity mapping is used in ResNets, a form of neural network. This means

that the input to one layer is transmitted directly or indirectly to another, which can

be easily trained without increasing the percentage of training errors. Using identity

mapping, ResNets aid in addressing the vanishing gradient problem. We used the

ResNet-50 as a features extractor composed of 50 layers in deep, which is considered

a pre-trained DCNN (Deep Convolutional Neural Network) on the ImageNet dataset

[28] that contains millions of labeled images, and also the ResNet-101, which also a

pre-trained DCNN on the ImageNet that is composed of 101 layers in deep.

4.1.2 Query Expansion Method

As shown in Fig. 4.1, which describes the complete idea of the expansion of deep

features for the original query and the reformulation of a new query for the final
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search process, where after the rapid search using a Query with 4096 or 1000 Deep

Features (QDF) of the original query to all deep features of images in the dataset,

the RbQE technique employs the mean values of the deep feature values for images

of top-ranked. From each class in the dataset, the top 10 similar images to the

original query are retrieved, and the mean value of deep features for each of the top

10 is calculated. This process produces a number of NQEs equal to the number of

classes in the dataset. After that, the most similar NQE to the original query will

be taken as the final NQE (FNQE), and then the FNQE is used for the final search

procedure. Table 4.1 provides a simple numerical example of building NQE, where

the feature vector dimension for the image is 4096 for both descriptors AlexNet and

VGGNets and 1000 for the ResNets descriptor.

Table 4.1: NQE based on mean values.
F1 F2 F3 F4 F5 . . . F4096

Img1 0.99 -15.05 -5.02 -41.11 -23.11 . . . 6.76
Img2 2.21 -12.71 -3.55 -43.14 -23.29 . . . 8.57
Img3 -1.29 -13.40 -7.85 -39.39 -28.45 . . . 8.29
Img4 -1.48 -11.07 -3.12 -37.64 -23.31 . . . 13.11
Img5 -6.69 -7.70 1.03 -40.86 -22.97 . . . 6.07
NQE -1.252 -11.986 -3.702 -40.428 -24.226 . . . 8.56
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Experimental Evaluation and Results

In this chapter, we introduce an analysis of the results of our experiments on five pub-

licly available datasets with different modalities (TCIA-CT, EXACT09-CT, NEMA-

CT, OASIS-MRI, and KIMIA Path960) and we present different CBMIR methods

used for comparison with the proposed method RbQE.

5.1 Experimental Framework

The computational method that was used is presented in this section to compare

the performance of the proposed method with other modern retrieval methods.

The name and abbreviations of all methods used for comparison with the proposed

method are presented in Table 5.1. We also show the similarity measurement that

has been used.

5.1.1 Image Similarity Estimation

The similarity values in the proposed method are calculated with the Euclidean

Distance (ED), which is used to calculate the similarity for both rapid and final

searches. Let NQE1= (f1, f2,..., fn) and NQE2 = (f ′1, f
′
2,..., f

′
n), two feature vectors

54
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Table 5.1: Name and Abbreviations of all methods used in the comparison.
S.No. Abbreviation Method Name Reference Year

1 LBP Local Binary Pattern [90] 1996
2 LTP Local Ternary Pattern [119] 2010
3 LDP Local Derivative Pattern [141] 2010
4 LTrP Local Tetra Patterns [82] 2012
5 AlexNet Deep Convolutional Neural Networks [60] 2012
6 LTCoP Local Ternary Co-Occurrence Patterns [84] 2013
7 LMeP Local Mesh Patterns [83] 2014
8 VGG-16 Visual Geometry Group [110] 2014
9 LWP Local Wavelet Pattern [33] 2015
10 SS3D Spherical Symmetric 3D Local Ternary Patterns [87] 2015
11 MDLBP Multichannel Decoded Local Binary Patterns [34] 2016
12 ResNet Residual Neural Network [46] 2016
13 QWLD Quaternionic Weber Local Descriptor [67] 2017
14 HCSCs Histogram of Compressed Scattering Coefficients [66] 2017
15 ST-CCA [64] Scattering Transform with Canonical Correlation Analysis [64] 2018
16 MDMEP Multi-dimensional multi-directional mask maximum edge pattern [38] 2018
17 LTP+VLAD Local Ternary Pattern and Vector of Locally Aggregated Descriptors [117] 2019
18 IR-Net Image Reconstruction Network [95] 2020

with n dimension, the similarity is computed as follows:

ED (NQE1, NQE2) =

√√√√ n∑
i=1

(
fi − f

′
i

)2 (Ch5-6)

5.1.2 Performance Estimation

In the experiments, every image in the dataset is used as a query, and an image is

only relevant if it falls under the same category as the query. The Average Retrieval

Precision (ARP), Average Retrieval Rate (ARR), and Fscore are three performance

indicators used to assess each retrieval strategy.

precision[92] : P (q) =
Number of relevant images retrieved

Number of images retrieved
(Ch5-7)
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recall[92] : R(q) =
Number of relevant images retrieved

Number of relevant images in the dataset
(Ch5-8)

ARP (%) =
100

| DB |

|DB|∑
i=1

P (Ii) (Ch5-9)

ARR(%) =
100

| DB |

|DB|∑
i=1

R(Ii) (Ch5-10)

Fscore(%) =
2× ARP× ARR
ARP+ ARR

(Ch5-11)

Where | DB | indicates the count of all dataset images.

5.2 Experimental Results

This section includes various experiments that illustrate the efficiency of RbQE

with ResNet-18, ResNet-50, ResNet-101, AlexNet, VGG-16, and VGG-19 as feature

extractors and compare its results to those of the existing methods presented in

Table 5.1. The RbQE method applied two different searching techniques: a rapid

search for each dataset class using one query image selected from the dataset’s image

collection, where every image in the dataset is considered a query. Then, the final

search is done using the final NQE (FNQE). Note that all searches are automated

without user participation or suggestion, which is considered a strong point. The

performance of the proposed method is compared to the modern methods, whether

deep learning-based or not.
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5.2.1 Retrieval Performance on TCIA-CT Dataset

The performance of the RbQE method is evaluated in the TCIA-CT dataset using

six feature extractors: ResNet-18, ResNet-50, ResNet-101, AlexNet, VGG-16, and

VGG-19. Table 5.2 shows the retrieval results in terms of ARP, ARR, and Fscore.

When compared to other methods, the suggested RbQE method using VGG-19

performs the best on the top 10 images and exceeds the RbQE with other feature

extractors. The retrieval results of the proposed method are improved by 0.84%,

0.16%, 0.27% as compared with ST − CCAv in terms of ARP, ARR, and Fscore.

Fig. 5.1 exhibits the TCIA-CT dataset query outcomes of the RbQE method with

VGG-19 features, which shows all the top 10 images in the same query image class.

Figure 5.1: Retrieved images for a TCIA-CT dataset query using RbQE with VGG-
19.

5.2.2 Retrieval Performance on EXACT09-CT Dataset

The comparison methods utilized in Subsection 5.2.1 are also taken into consid-

eration here and are assessed using the same experimental parameters for the TCIA-

CT dataset. The retrieval result of the RbQE with different feature extractors is
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Table 5.2: Performance of different methods on TCIA-CT dataset with the top 10
matches considered.

Method ARP ARR Fscore

LBP [90] 66.91 9.74 17.00
LMeP [83] 73.71 10.77 18.79
LWP [33] 88.40 13.09 22.80
SS3D [87] 80.54 11.71 20.45

HCSCsh [66] 94.74 14.45 25.08
HCSCsv [66] 95.12 14.52 25.20

ST −DCavg [64] 95.80 14.65 25.41
ST −DCmax [64] 95.71 14.58 25.30
ST − CCAh [64] 96.33 14.68 25.48
ST − CCAv [64] 96.45 14.71 25.52

RbQE with ResNet− 18 96.84 14.78 25.65
RbQE with ResNet− 50 96.87 14.76 25.61
RbQE with ResNet− 101 96.04 14.66 25.43
RbQE with VGG− 16 96.92 14.80 25.68
RbQE with VGG− 19 97.29 14.87 25.79
RbQE with AlexNet 96.86 14.77 25.63

shown in Table 5.3. In comparison to other methods, the features of the AlexNet

descriptor with the RbQE method achieve the highest performance on the top 10

images and exceed the RbQE with other feature extractors, while all the descriptors

with RbQE exceed the ST −CCAv method. The outcomes of the AlexNet with the

RbQE method in relation to ST − CCAv in the ARP, ARR, and Fscore ranges are

improved by 4.86%, 1.64%, 2.47%. The results of the top 10 images obtained using

the RbQE search technique with AlexNet features are shown in Fig. 5.2.

5.2.3 Retrieval Performance on NEMA-CT Dataset

We also use the NEMA-CT dataset to assess the performance of RbQE with different

feature extractors and other modern methods. The proposed RbQE with VGG-19

features achieves the most satisfactory accuracy on the top 10 images and is superior
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Figure 5.2: Retrieved images for an EXACT09-CT dataset query using RbQE with
AlexNet.

Table 5.3: Performance of different methods on EXACT09-CT dataset with the top
10 matches considered.

Method ARP ARR Fscore

LBP [90] 65.03 19.51 30.02
LMeP [83] 63.23 18.91 29.11
LWP [33] 83.00 24.87 38.27
SS3D [87] 67.00 20.09 30.91

HCSCsh [66] 90.74 28.53 43.41
HCSCsv [66] 91.50 28.83 43.84

ST −DCavg [64] 92.09 29.07 44.19
ST −DCmax [64] 91.93 28.98 44.07
ST − CCAh [64] 91.92 28.90 43.98
ST − CCAv [64] 93.35 29.44 44.76

RbQE with ResNet− 18 96.06 30.33 46.1
RbQE with ResNet− 50 97.45 30.86 46.88
RbQE with ResNet− 101 96.79 30.53 46.42
RbQE with VGG− 16 98.16 31.06 47.19
RbQE with VGG− 19 96.99 30.63 46.56
RbQE with AlexNet 98.21 31.08 47.23

to all other descriptors used by the RbQE. The retrieval results of the RbQE method

with VGG-19 are improved by 1.24%, 0.18%, and 0.36% compared to the HCSCs

method, as shown in Table 5.4. The result of the top 10 images for the query using
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the RbQE method with VGG-19 features is shown in Fig. 5.3.

Figure 5.3: Retrieved images for a NEMA-CT dataset query using RbQE with
VGG-19.

Table 5.4: Performance of different methods on NEMA-CT dataset with top 10
matches considered.

Method ARP ARR Fscore

LBP [90] 90.55 29.33 44.31
LTCoP [84] 92.15 30.31 45.62
LMeP [83] 93.09 30.62 46.08
LWP [33] 95.32 31.33 47.16
SS3D [87] 92.24 30.26 45.57
LTP [119] 92.00 30.23 45.51
LDP [141] 94.22 31.08 46.74
LTrP [82] 93.69 30.96 46.54
HCSCs [66] 98.33 33.64 50.13

RbQE with ResNet− 18 99.05 33.54 50.12

RbQE with ResNet− 50 98.12 33.03 49.43

RbQE with ResNet− 101 98.58 33.24 49.71

RbQE with VGG− 16 99.14 33.56 50.15

RbQE with VGG− 19 99.57 33.82 50.49

RbQE with AlexNet 99.44 33.75 50.39
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5.2.4 Retrieval Performance on OASIS-MRI Dataset

The efficiency of the RbQEmethod with different feature extractors was also compar-

ed to IR-Net [95] in addition to some other modern methods. Table 5.5 presents the

performance of the top 10 images in terms of ARP. In terms of average group-wise,

the RbQE method with AlexNet, VGG-16, and VGG-19 features exceeds the IR-Net

the RbQE with ResNet-18, ResNet-50, and ResNet-101 in terms of ARP, as shown

in Table 5.6. On the top 10 images, the RbQE with AlexNet features performs

with the highest level of accuracy compared to the RbQE with VGG-16, VGG-19,

ResNet-18, ResNet-50, and ResNet-101. The results of the query using the RbQE

method with AlexNet features are shown in Fig. 5.4.

Figure 5.4: Retrieved images for an OASIS-MRI dataset query using RbQE with
AlexNet.

5.2.5 Retrieval Performance on KIMIA Path960 Dataset

The Path960 KIMIA dataset is used in this experiment. We compared RbQE with

different types of feature extractors against a modern medical image retrieval method
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Table 5.5: Performance of different methods on OASIS dataset in terms of ARP for
top 10 matches.

Method Top1 Top2 Top3 Top4 Top5 Top6 Top7 Top8 Top9 Top10

LBP [90] 100 72.92 61.20 56.89 53.25 50.04 48.63 47.21 45.87 44.66
LTCoP [84] 100 73.87 62.79 57.66 54.49 51.58 49.37 47.57 46.93 45.82
SS3D [87] 100 68.53 56.77 51.54 47.89 45.68 43.77 42.37 41.44 40.45
LTP [119] 100 73.63 63.42 57.84 53.87 51.46 49.37 47.77 46.45 45.04
LTrP [82] 100 70.67 59.62 52.55 48.69 47.43 45.81 44.30 43.34 42.52

MDMEP [38] 100 81.47 73.87 70.19 67.84 66.71 65.52 63.9 63.37 62.49
AlexNet [60] 100 80.88 73.56 68.41 65.46 62.98 61.83 60.54 59.46 58.36
ResNet [46] 100 78.50 71.18 67.99 64.94 62.87 60.54 59.26 58.38 57.48
VGG-16 [110] 100 76.60 68.88 63.84 61.24 59.62 58.23 57.60 56.03 55.06
IR-Net [95] 100 83.37 78.62 76.37 74.68 73.44 72.21 71.62 70.89 70.45

RbQE with ResNet− 18 100 100 99.92 97.27 91.07 87.69 83.68 81.26 78.33 76.77

RbQE with ResNet− 50 100 100 99.45 95.78 92.02 87.81 83.71 81.09 78.57 76.32

RbQE with ResNet− 101 100 100 99.13 94.00 88.84 84.56 80.59 78.27 76.43 74.73

RbQE with VGG− 16 100 100 99.92 98.22 94.54 91.05 87.72 84.68 81.13 79.88

RbQE with VGG− 19 100 100 99.92 98.28 95.01 91.61 88.77 85.69 83.27 80.83

RbQE with AlexNet 100 100 100 99.23 97.1 93.98 91.58 88.81 86.8 84.79

Table 5.6: Performance of different methods on OASIS dataset in terms of ARP for
group-wise.

Method Group1 Group2 Group3 Group4 Average

LBP [90] 55.08 35.20 32.70 51.60 43.64
LTCoP [84] 50.08 41.08 34.16 55.19 45.12
SS3D [87] 44.19 39.02 35.73 41.42 40.08
LTP [119] 52.90 37.06 35.73 51.32 44.25
LTrP [82] 52.26 37.35 34.04 43.21 41.75

MDMEP [38] 69.52 50.59 48.31 77.64 62.49
AlexNet [60] 68.87 43.73 41.01 74.72 57.08
ResNet [46] 69.11 45.59 44.27 66.42 56.35
VGG-16 [110] 70.73 44.61 38.09 61.04 53.62
IR-Net [95] 77.10 55.29 57.19 88.40 69.49

RbQE with ResNet− 18 87.18 65.39 69.33 81.79 75.92
RbQE with ResNet− 50 84.76 65.69 68.09 83.58 75.53
RbQE with ResNet− 101 83.87 57.35 72.02 83.02 74.07
RbQE with VGG− 16 91.21 79.41 60.79 83.11 78.63
RbQE with VGG− 19 91.45 80.88 62.25 83.96 79.64
RbQE with AlexNet 94.44 76.67 76.97 87.92 84.00

on a recent histopathological image, LTP+VLAD [116] in addition to some other

methods as explained in [116]. The retrieval performance is presented in Tables

5.7, 5.8, and 5.9 in terms of ARP, ARR, and Fscore respectively. It is clear from

the tables that RbQE with ResNet-50 is superior to methods on the top 5, 10, 15,
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and 20 images but does not exceed RbQE with ResNet-101 on the top 10 images.

The result of the retrieval for RbQE with ResNet-50 is improved by 2.14%, 1.94%,

6.74%, and 9.42% respectively in terms of ARP, and improved by 0.23%, 0.42%,

2.15%, 4.01% respectively in terms of ARR, also improved by 0.41%, 0.69%, 3.26%,

5.62% respectively in terms of Fscore as compared with the LTP+VLAD method.

Fig. 5.5, 5.6, 5.7, and 5.8 present the query results of the top 5, 10, 15, and 20

images, respectively for the RbQE with ResNet-50 over the KIMIA Path960 dataset.

It appears that the images retrieved for the query are from the same category as the

query.

Figure 5.5: Retrieving the top 5 images for a KIMIA Path960 dataset query using
RbQE with ResNet-50.

Figure 5.6: Retrieving the top 10 images for a KIMIA Path960 dataset query using
RbQE with ResNet-50.
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Figure 5.7: Retrieving the top 15 images for a KIMIA Path960 dataset query using
RbQE with ResNet-50.

Figure 5.8: Retrieving the top 20 images for a KIMIA Path960 dataset query using
RbQE with ResNet-50.

5.3 Time Complexity

The feature extraction average time, retrieval average time, and total CPU time

in seconds are shown in Table 5.10 using the proposed RbQE with the different

feature extractions methods (VGG-16, VGG-19, AlexNet, ResNet-18, ResNet-50,

and ResNet-101) over each dataset (TCIA-CT, EXACT09-CT, NEMA-CT, OASIS-

MRI, and KIMIA Path960). All the experiments were performed on a computer,

with Intel(R) Core(TM) i7-4510U CPU@2.00 GHz processor, 8 GB RAM, and 64-bit
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Table 5.7: ARP for various methods on the KIMIA Path960 dataset for the top 5,
10, 15, and 20 retrieved images.

Method Top5 Top10 Top15 Top20

LBP [90] 88.74 84.05 80.50 75.89
HCSCs [66] 47.48 42.21 37.50 31.54
MDLBP [34] 86.87 81.71 76.27 70.61
QWLD [67] 41.44 37.46 30.89 23.34
AlexNet [60] 93.10 91.04 85.01 81.98
VGG-16 [110] 94.12 92.40 85.41 82.24

LTP+VLAD [117] 96.92 95.00 88.57 84.65
RbQE with ResNet− 18 98.6 94.99 92.34 89.48
RbQE with ResNet− 101 99.04 96.96 94.69 92.89
RbQE with ResNet− 50 99.06 96.94 95.31 94.07
RbQE with VGG− 16 98.6 95.32 92.34 89.48
RbQE with VGG− 19 98.6 93.66 92.34 89.48
RbQE with AleNet 98.69 95.04 91.89 88.96

Table 5.8: ARR for various methods on the KIMIA Path960 dataset for the top 5,
10, 15, and 20 retrieved images.

Method Top5 Top10 Top15 Top20

LBP [90] 9.44 17.88 25.69 32.29
HCSCs [66] 5.05 8.98 11.97 13.42
MDLBP [34] 9.24 17.38 24.34 30.05
QWLD [67] 4.41 7.97 9.86 9.93
AlexNet [60] 9.90 19.37 27.13 34.88
VGG-16 [110] 10.01 19.66 27.26 34.99

LTP+VLAD [117] 10.31 20.21 28.27 36.02
RbQE with ResNet− 18 10.49 20.21 29.47 38.08
RbQE with ResNet− 101 10.54 20.63 30.22 39.53
RbQE with ResNet− 50 10.54 20.63 30.42 40.03
RbQE with VGG− 16 10.49 20.28 29.47 38.08
RbQE with VGG− 19 10.48 19.93 29.47 38.08
RbQE with AleNet 10.49 20.22 29.33 87.36

Windows 10 Enterprise LTSC operating system. The total CPU time of ResNet-18

is less than that of VGG-16, VGG-19, ResNet-18, ResNet-50, and ResNet-101. The

retrieval times of VGG-16, VGG-19, and AlexNet are equal on the same dataset
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Table 5.9: Fscore for various methods on the KIMIA Path960 dataset for the top 5,
10, 15, and 20 retrieved images.

Method Top5 Top10 Top15 Top20

LBP [90] 17.06 29.49 38.95 45.30
HCSCs [66] 9.13 14.81 18.15 18.83
MDLBP [34] 16.70 28.66 36.90 42.16
QWLD [67] 7.97 13.14 14.95 13.93
AlexNet [60] 17.89 31.94 41.13 48.94
VGG-16 [110] 18.24 19.66 32.42 49.09

LTP+VLAD [117] 18.64 33.32 42.86 50.54
RbQE with ResNet− 18 18.96 33.33 44.68 53.42
RbQE with ResNet− 101 19.05 34.02 45.82 55.46
RbQE with ResNet− 50 19.05 34.01 46.12 56.16
RbQE with VGG− 16 18.96 33.45 44.68 53.42
RbQE with VGG− 19 18.96 32.86 44.68 53.42
RbQE with AleNet 18.98 33.35 44.26 53.11

because they have the same dimension for the feature vector (4096). Also, the

retrieval times of ResNet-18, ResNet-50, and ResNet-101 are equal on the same

dataset because they have the same dimension of feature vector (1000).
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Table 5.10: CPU elapse time (sec) for proposed RbQE with the different features
extractions methods over all five test datasets.

Dataset Feature Extraction Method Feature Extraction Time (A) Retrieval Time (B) Total CPU time (A + B)
(sec) (sec) (sec)

TCIA-CT

VGG-16 1.69 3.99 5.68
VGG-19 1.84 3.99 5.83
AlexNet 1.09 3.99 5.08
ResNet-18 1.17 1.15 2.32
ResNet-50 1.68 1.15 2.83
ResNet-101 3.9 1.15 5.05

EXACT09-CT

VGG-16 1.69 4.93 6.62
VGG-19 1.84 4.93 6.77
AlexNet 1.09 4.93 6.02
ResNet-18 1.17 1.6 2.77
ResNet-50 1.68 1.6 3.28
ResNet-101 3.9 1.6 5.5

NEMA-CT

VGG-16 1.69 2.62 4.31
VGG-19 1.84 2.62 4.46
AlexNet 1.09 2.62 3.71
ResNet-18 1.17 0.75 1.92
ResNet-50 1.68 0.75 2.43
ResNet-101 3.9 0.75 4.65

OASIS-MRI

VGG-16 1.69 2.5 4.19
VGG-19 1.84 2.5 4.34
AlexNet 1.09 2.5 3.59
ResNet-18 1.17 0.76 1.93
ResNet-50 1.68 0.76 2.44
ResNet-101 3.9 0.76 4.66

KIMIA Path960

VGG-16 1.69 2.5 4.19
VGG-19 1.84 2.5 4.34
AlexNet 1.09 2.5 3.59
ResNet-18 1.17 2.08 3.25
ResNet-50 1.68 2.08 3.76
ResNet-101 3.9 2.08 5.98
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Conclusion and Future Work

In this chapter, we first conclude what has been done in this thesis in Section 6.1.

Section 6.2 presents our insights to improve the accuracy of a content-based medical

image retrieval system.

6.1 Conclusions

An efficient method (RbQE) has been presented for the retrieval of CT, MRI, and

histopathological images. RbQE method benefits from pre-trained deep convolu-

tional neural networks (AlexNet, VGGNets, and ResNets) as extractors of the deep

and high-level features. RbQE method relies on query expansion, where this expan-

sion method is considered a fully automatic process that only requires the user to

enter the query image without any involvement or feedback. RbQE method consists

of two basic searching procedures: a rapid search and a final search. In the rapid

search, the original query is expanded by retrieving the top-ranked images from each

class and is used to reformulate the query by calculating the mean values for deep

features of the top-ranked images, resulting in a new query for each class. In the

final search, the new query that is most similar to the original query will be used

for retrieval from the database. This method was tested on five different formats
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of standard and publicly available datasets: TCIA-CT, EXACT09-CT, NEMA-CT,

OASIS-MRI, and KIMIA Path960. In terms of ARP, ARR, and Fscore. Experi-

mental results show that the proposed method exceeds the compared methods by

0.84%, 4.86%, 1.24%, 14.34%, and 1.96% in average retrieval precision (ARP) on

the retrieval of the top ten, for TCIA-CT, EXACT09-CT, NEMA-CT, OASIS-MRI,

and KIMIA Path960, respectively. But for KIMIA Path960, the ARPs for the top

five, fifteen, and twenty exceed the compared methods by 2.14%, 6.74%, and 9.42%,

respectively.

6.2 Future Work

In the future, we can use new extractors like Stacked Denoising Autoencoders

(SDAE) that can describe the medical image more accurately and help increase

the accuracy of retrieval. Also, we can reduce the time of retrieval by using an

indexing method to index all the images and find similarly referenced images. We

will try to improve the dimension of feature vectors.
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 ملخص الرسالة

( أكثر أهمية الآن ، خاصة  CBMIRيعتبر استرجاع وإدارة الصور الطبية اعتمادا علي محتواها ) 

مع زيادة التصوير الطبي وتوسيع قاعدة بيانات الصور الطبية. أيضًا ، تسمح هذه الأنظمة بالاستفادة 

من الصور الطبية في فهم أفضل ورؤى أعمق لأسباب وعلاج الأمراض المختلفة ، وليس فقط 

ة الصور واستخراج الميزات دورًا هامًا في مجال معالج CBMIRلأغراض التشخيص. لذلك ، لعب 

منخفضة المستوى مثل الرسوم البيانية الملونة والحواف والملمس والشكل, وكذلك مقاييس التشابه 

المستخدمة بالفعل في استرجاع  CBMIRلمقارنة واسترجاع الصور الطبية. تعزز غالبية طرق 

ية بين المستويات البصرية الصورة الطبية وتشخيص الأمراض عن طريق تقليل مشكلة الفجوة الدلال

المنخفضة والمستويات الدلالية العالية. لتحقيق كل هذه الأهداف ، هناك حاجة ماسة إلى طريقة ذات 

 كفاءة ودقة في استرجاع الصور الطبية اعتمادا علي محتواها.

 ( طريقة فعالة لاسترجاع الصور الناتجة عن الأشعة المقطعية ) RbQEتقترح هذه الأطروحة )  

CT  ( والأشعة بالرنين المغناطيسي )MRI  وصور الأنسجة. تعتمد )RbQE  على توسيع ميزات

لاستخراج  ResNetsو  VGGNetsو  AlexNetالاستعلام واستغلال نماذج التعلم المدربة مسبقاً 

للبحث:  RbQEالميزات المدمجة والعميقة والعالية المستوى من الصور الطبية. هناك إجراءان في 

سريع وبحث نهائي. في البحث السريع, يتم توسيع الاستعلام الأصلي عن طريق استرداد الصور  بحث

ذات الترتيب الأعلى من كل فئة ويتم استخدامه لإعادة صياغة الاستعلام عن طريق حساب القيم 

ي المتوسطة للميزات العميقة للصور ذات الترتيب الأعلى, مما يؤدي إلى استعلام جديد لكل فئة. ف

البحث النهائي ، سيتم استخدام الاستعلام الجديد الأكثر تشابهًا مع الاستعلام الأصلي للاسترجاع من 

 قاعدة البيانات.



-TCIAتم اختبار أداء الطريقة المقترحة علي خمس مجموعات بيانات معتمدة متاحة للجمهور ، وهي 

CT  وEXACT09-CT  وNEMA-CT  وOASIS-MRI  و KIMIA Path960 قارنتها وم

بأحدث الطرق الموجودة. تظهر النتائج التجريبية أن الطريقة المقترحة تتجاوز الطرق المقارنة بنسبة 

( في  ARP٪  في متوسط دقة الاسترجاع ) 1.96٪ و 14.34٪ و 1.24٪ و 4.86٪ و 0.84

-OASISو  NEMA-CTو  EXACT09-CTو  TCIA-CTاسترجاع العشرة الأوائل ، لـ 

MRI  وKIMIA Path960  على التوالي. ولكن بالنسبة لـ ،KIMIA Path960  فإن ،ARPs 

 ٪9.42٪ و 6.74٪ و 2.14لأعلى خمسة وخمسة عشر وعشرين تتجاوز الطرق المقارنة بنسبة 

 .على التوالي
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